The Farmer, Wolf, Goat, and Cabbage


Various Heuristics


William R. Pringle


CSE 481 - Introduction to Artificial Intelligence


Dr. Michael J. Piovoso


�
Introduction


This paper describes a program written by William R. Pringle for CSE 481.  The program finds a solution to the Farmer, Wolf, Goat, and Cabbage problem.   The program uses an A* algorithm to determine the most efficient solution to the problem.


The problem is as follows: a farmer arrives at the western bank of a river and wishes to go to the eastern bank.  He has with him a wolf, a goat, and some cabbage.  On the west bank of the river is a boat.  The boat can hold the farmer and at most one other item.  Only the farmer can row the boat.  He cannot leave the wolf and the goat alone because the wolf will eat the goat.  He cannot leave the goat and the cabbage together because the goat will eat the cabbage.  What is the optimum way for the farmer to get everything across the river?


To solve the problem, a program was written using the A* algorithm.  The A* search methodology is a modification of the greedy algorithm which uses an evaluation function: 


f(n) = h(n) + g(n)


Where:


h(n) 	is a heuristic which evaluates the current situation.  It is guaranteed not to underestimate the value of the position


g(n)	is the path length (how many nodes from the root of the search tree)


The A* algorithm always considers the next node with the smallest value of f(n).  Child nodes are identified, evaluated, and placed on a sorted queue.


The program written can use one of three heuristics, specified by the user:


Breadth-First search (i.e., h(n) is always zero)


A simple heuristic (how many entities are on the wrong shore)


A better heuristic (how many moves will it take to move the entities to the right shore)


The Approach


This section presents the general approach that was used within the program.  The next section provides a more detailed description of each major module or function.  The purpose of this section is to provide a general overview of the process.


The program has an Open List of states to be considered.  This list is sorted in ascending order by the results of the evaluation function.  Nodes with lower values are evaluated before those with higher values.  This list is initialized to contain the initial state (WWWW, indicating that all entities are on the west bank.)  The goal state is EEEE, indicating that all entities are on the east bank.


The node at the front of the Open List is examined.  All possible moves are determined, and checked for valid moves.  For any given state, the number of possible moves can be determined by the number of entities on the same bank as the farmer (including the farmer).  This represents the farmer rowing alone to the other side and the farmer taking each entity on the same side to the other bank.  


Invalid moves are those resulting in one of the invalid states (wolf & goat alone, goat & cabbage alone) as well as any state that was previously considered.  This latter restriction prevents loops in the search tree.  


Invalid moves are discarded and valid moves are inserted into the Open List in their proper order, based on their evaluation.  


This process continues until the goal state is found or the Open List is empty, indicating that there is no solution.  If the goal state is found, the solution path is displayed.


The Heuristics


The A* Algorithm uses a heuristic function to approximate the value of a given state.  The higher the number, the closer the state is to the solution.  This value is used to determine what nodes should be examined next when searching for a solution.  In order to be admissible, the heuristic must never over estimate the value of a state.  The program supports three admissible heuristics: breadth-first, simple, and better.


The Breadth-First Search


If the heuristic function always returns zero, then an A* Algorithm becomes a breadth-first search.  This is because f(n) is reduced to merely g(n), which is the length of the path from the root node.  The result is that all possible nodes at the top level are examined, then all possible nodes at the next level, etc.


The Simple Heuristic


The simple heuristic counts the number of entities (other than the farmer) that are on the west shore.  This is an admissible heuristic because it will always take at least one move for the farmer to get an entity on the west shore over to the east shore.  The farmer isn’t counted in this heuristic because if only the farmer and one entity were on the west shore, it would only take one move for the farmer to row that entity to the east bank.


The Better Heuristic


The simple heuristic is admissible, but not very good.  If the farmer is on the east bank, it would take two moves to row an entity from the west bank to the east bank.  If the farmer is on the west bank, it would take only one move to row the first entity to the east bank, and then two moves from then on.


The better heuristic estimates that it will take two moves to transfer each entity on the west bank (except the farmer).  Then, if the farmer is on the west bank, one is subtracted from the estimate.  This would be a perfect heuristic if it were not for the invalid combinations (i.e., the wolf & the goat or the goat & the cabbage).


The Program


The program uses two packages that were written by this author some time ago, and are used often for a number of other programs.  The first package implements link lists (linklist.c), and the second dynamic arrays (prodlist.c).  The source files for these packages are included as part of the project, but will not be dealt with extensively in this paper.  Enough will be provided to understand how they are used by this program.  A complete description of these auxiliary packages is beyond the scope of this paper.  Some knowledge of C is assumed.


The program, called farmer, is written in ANSI C, and runs under MS-DOS and UNIX.  It should be portable for virtually any other C platform.  The program doesn’t require any command line arguments.  Once execution begins, the program searches for the solution, writing information to the log file.  After a solution is found, it is also written to the log file.


The program consists of a source file (farmer.c), and a header file (farmer.h).  Included on the disk are auxiliary files linklist.c, linklist.h, prodlist.c, and prodlist.h.  Prototype files are also included: farmer.pro, linklist.pro, and prodlist.pro.


The header file will be discussed first, followed by a description of the source file.


Header file: farmer.h


The header file, farmer.h, contains definitions used by the farmer program.  In particular, it contains symbolic constants (using #define) and a structure to contain information concerning a given state which represents a node in the search tree.


Symbolic Constants


There are two groups of symbolic constants.  The first represent the various entities involved in the puzzle: The farmer (ent_farmer), the wolf (ent_wolf), the goat (ent_goat), and the cabbage (ent_cabb).


The second group is used to indicate the validity of the various states produced by potential moves.  A move can be invalid for a number of reasons: a duplicate state (i.e., one that was previously considered) (STATE_DUP), the wolf is alone with the goat (state_wolf), or the goat is alone with the cabbage (state_cabb).  If the state doesn’t fall into one of these states, then it is considered a valid move (state_valid). A special state (state_goal) represents the goal state.


The State Structure


The structure representing each state is shown in Figure 1.  


typedef struct farmer_struct {


	char states[5];	/* state of each entity */


	struct farmer_struct *parent;	/* parent of this structure */


	int move;		/* action of this move */


	int g;			/* length of path */


	int h;			/* heuristic evaluation */


	int f;			/* fitness function (g+h) */


} Farmer;


Figure � SEQ Figure \* ARABIC �1� - the state structure


The current state is represented by the character string states in the structure.  Each character in this string represents one of the entities in the problem.  The first group of symbolic constants (ent_farmer through ent_cabb) define the location (offset) of the character representing that entity.  Each character in the string contains an E or a W to indicate that the entity is on the east or west bank of the river.  The initial state is WWWW; the goal state is EEEE.


Each structure contains a pointer to its parent.  This is the state immediately preceding this one (the parent node on the search tree.)  This information is used to produce the final solution by backtracking through the nodes from the goal state back to the initial state.


The move field identifies the action required to move from the parent state to this state.  This is represented by one of the symbolic constants representing the entities.  All moves involve the farmer rowing the boat from the shore he is currently on to the opposite shore.  He may or may not take another entity with him.  If the farmer rows only himself, this is represented by the value ent_farmer.  If he takes something else with him, this is indicated by the symbolic constant representing that entity.  For example, if the farmer rows the goat to the opposite shore, the field move will contain ent_goat.


The fields g, h, and f represent the various components of the evaluation function.  The g field represents the distance from the root node.  The value of this field is set to zero for the root node, and set to one more than the value of the parent node for all other nodes.  


The h field represents how close the current state comes to the goal state.  This program allows the user to select one of three heuristics: a breadth-first search, a simple heuristic, and a better heuristic, as described above.


The value of the f field was simply the total of g and h.


Source File farmer.c


The source file farmer.c contains all the code unique to this problem.  It contains static global character strings representing the initial and goal state, as well as an array of character strings (Move) containing an English description of the various moves.


Not all the routines in the source file farmer.c are described below.  Some routines are fairly simple and their names should allow the reader to determine their use.


The main program


 The main program starts by opening the output log file (farmer.txt), creates a link list (Open) for the nodes to be examined, and creates a dynamic array of character strings (Past) that will contain the states previously encountered.  The user is prompted to select which heuristic should be used for the run.  The initial state is created, placed in the Open list, and added to the Past array.


The program then enters into a loop until either no more nodes are left to examine or the goal state has been found.  This loop does the following:


Some program statistics are written to the logfile


the new current state to be evaluated is popped from the front of the Open list.  


The current state is printed in the logfile


The routine find_possible_states is called to determine all possible states from the current state.


For each possible state:


evaluate_possible_state is called, which determines if the state is valid.


If the goal state is found, a flag is set and the loop is exited


If the state is valid, it is moved to the correct place in the Open List.


The list of possible (but invalid) states is cleared


When the loop terminates, a test is made to determine if the goal state has been found.  If so, then the solution is displayed by calling print_solution.  Finally, the logfile is closed and the program terminates.


The routine create_farmer_state


This routine is called to create a new state structure.  The new state is passed in the form of a string which is copied to the states field of a new structure.  The parent is also passed (except for the root node, in which case the NULL pointer is passed).  If a parent is passed, then the g field is set to the parents g field plus one; otherwise it is set to zero.  The h field is set by calling the routine evaluate_state.  Finally, the f field is set to the value of g + h.


The routine add_to_list


This routine uses the link list routines to add a node to the Open list in such a way that the list remains sorted by the f value of the states, with the smaller values at the front of the list.


The routine starts at the head of the list, and proceeds to the tail of the list until it finds an entry with an f value greater than or equal to the entry to be added.  When this happens, the new node is added in front of this entry.  If no such entry is found, the new node is added to the tail of the list.


Note that if there are two nodes with the same f value, the most recently found will be processed first.


The routine evaluate_possible_state


This routine determines if a possible state is valid.  If the state is the goal state, the value STATE_GOAL is returned.


There are two states that are always invalid: if the wolf & goat or the goat & cabbage are on the same shore, and the farmer is on the other shore.  If one of these states are detected, the appropriate error value (state_wolf or state_cabb)is returned.  


Otherwise, a search is made of all previous states in the Past list for the state being evaluated.  If the state is found, then the STATE_DUP error value is returned.


If none of the above occur, then the state is valid.  It is added to the Past list and STATE_VALID is returned.


The routine find_possible_states


This routine generates a list of all possible moves from the current state.  This list is returned as a dynamic array of structures, each representing a possible move.  No analysis is performed to determine if a given move is valid.  (That is handled by the routine evaluate_possible_state, see above).


Conclusion


This program successfully demonstrates an A* algorithm in action.  The solution is found in 9 steps for the breadth-first and simple heuristics, and in 8 steps for the better algorithm.  Because the A* algorithm is used, the solution is optimal.  In fact, the solution is identical for all three heuristics.  The log file enables the user to understand what steps and decisions were undertaken during the search to arrive at the solution.  Once the solution is found, an English description is presented in the log file as shown in Figure 2.


With very little effort, this program could be modified to solve a different problem.  With a little more effort, the program could be made into a generic A* algorithm program, where the user would provide various functions to evaluate nodes, print solutions, etc.





Solution found in 9 steps!


Initial state:


	State = WWWW, g= 0, h= 4, f= 4


Farmer rows the goat to the east shore:


	State = EWEW, g= 1, h= 2, f= 3


Farmer rows himself to the west shore:


	State = WWEW, g= 2, h= 3, f= 5


Farmer rows the wolf to the east shore:


	State = EEEW, g= 3, h= 1, f= 4


Farmer rows the goat to the west shore:


	State = WEWW, g= 4, h= 3, f= 7


Farmer rows the cabbage to the east shore:


	State = EEWE, g= 5, h= 1, f= 6


Farmer rows himself to the west shore:


	State = WEWE, g= 6, h= 2, f= 8


Farmer rows the goat to the east shore:


	State = EEEE, g= 7, h= 0, f= 7


Figure � SEQ Figure \* ARABIC �2� - the solution found





�PAGE  �








The Farmer, Wolf, Goat, and Cabbage		CSE 481 








�PAGE  �








�PAGE  �6�


Bill Pringle		� DATE  \l
