Problem 1
Consider the following expert system:
	Rules:
	[R1]
		[1a] IF you are over 21
		[1b] AND you have a good credit rating
		[1c] AND you have a good empl
o
yment history
		[1d] AND your potential car payment is less than 20% of your gross monthly pay
		THEN you are eligible for a car loan

	[R2]
		[2a] IF your credit report has 2 or fewer negative credit marks in the last 3 years
		THEN you have a good credit rating

	[R3]
		[3a] IF you are currently employed
		[3b] AND you have been steadily employed with the same firm for at least one year
		THEN you have a good employment history

	[R4]
		[4a] IF value of monthly car payments
				divided by gross monthly pay is less than 20%
		THEN your potential car payment is less than 20% of your gross monthly pay

Working Memory:

	[W1] Age: over 21
	[W2] Employed: 2 years with General Electric
	[W3] Monthly Salary: $4,000
	[W4] Monthly Car Payment: $675.00
	[W5] Credit Report: 1 negative credit mark in the last 3 years

Goal:
	[G] You are eligible for a car loan
Solution 1a
1 a) Show working memory, the conflict set, and conflict resolution for backward chaining.
Figure � SEQ Figure * ARABIC �
1
� - Solution 1a
Step�Goal State(s)�Assumed to be true�Fact or Rule��0�G��R1��1�1a, 1b, 1c, 1d�G�W1��2�1b, 1c, 1d�G, 1a, W1�R2��3�2a, 1c, 1d�G, 1a, 1b, W1�W5��4�1c, 1d�G, 1a, 1b, 2a, W1, W5�R3��5�3a, 3b, 1d�G, 1a-c, 2a, W1, W5�W2��6�1d�G, 1a-c, 2a, 3a-b, W1-2,5�W4/W3=.16��
Backward chaining is performed by searching for rules or facts that
could prove that the goal state is true. If a fact is found, then the goal has been proven; if a rule is found, then the preconditions for that rule become the new goal state(s). This process is repeated until either all facts are found to prove the goal state(s), indicating that the goal state is true, or some precondition is found that cannot be proven, in which case the original goal state is assumed to be false.

For example, the goal state could be proven if R1 could be fired. Rule 1 could be fired if 1a through 1d were true. 1a could be shown true if you were over 21. W1 indicates that you are over 21, so
W1
 can prove 1a. If rule 2 could be fired, then 1b could be shown to be true. Rule 2 could be fired if 2a were true. W2 indicates that 2a is true , which means that rule 2 can be fired
, so 1b is true
. This process is repeated until all the proconditions have been traced back to working memory. (See � REF _Ref338731021 * MERGEFORMAT �
Figure
1
�)
Solution 1b
1b) Show working memory, the conflict set, and conflict resolution for forward chaining

Step�Working Memory�Conflict Set�Rule Fired��1�W1�1a�1a��2�1a, W1, W2�R3�R3��3�1a, 1c, W1, W2, W3�(part of R4)�(none)��4�1a, 1c, W1-W4�R4�R4��5�1a, 1c, 1d, W1-W5�R2�R2��6�
1a-
d. W1
-
W5�R1�R1��Figure � SEQ Figure * ARABIC �
2
� - Solution 1b
When performing forward chaining, each time new knowledge is introduced into the database, the existing rules are checked to determine what
conclusions
 can be derived. This repeats until the goal state is found.
For example, W1 can be used to show that 1a is true. W2 can be used to fire R3. This process continues until Rule 1 is fired to prove the goal state. (See � REF _Ref338731834 * MERGEFORMAT �
Figure
2
�)
Problem 2
2) Apply alpha-beta pruning to the tic-tac-toe game. X to move. Expand up to 2 moves, using the heuristic: the number of potential winning rows - number of potential losing rows
 | O | O

---+---+---
 | X |
---+---+---
 X | |
Figure � SEQ Figure * ARABIC �
3
� - Tic-Tac-Toe Board

Note: this is not a particularly good heuristic since is considers a sure win for your opponent the same as a potential win. If your opponent can definitely win in the next move, but you have several potential wins, this heuristic can put you into a losing situation. According to the heuristic, the bottom right corner is just as good for X as the upper left, even though the bottom right is a losing move. Nevertheless, this exercise is about alpha-beta pruning, not the heuristic.

The current board configuration is shown in � REF _Ref338732284 * MERGEFORMAT �
Figure
3
�, which is represented by the string: -OO-X-X--

Alpha-Beta pruning is a modification of the Min/Max search method. A high score indicates a good situation for you; a lower score indicates a better situation for your opponent. The assumption is that both players would make the move that gives them the greatest advantage

For alpha-beta pruning, you begin by using the Min/Max method to evaluate the first node on the search tree. Once the first node is evaluated, the algorithm begins evaluating the rest of the search tree. Once you find a move by your opponent that has a score not better than your best score so far, there is no need to continue examining that portion of the search tree, since you can’t find a better move than your current best move (since your opponent will no doubt choose the move with the lower score). The value of your move is the minimum value of your opponents next move. You then choose your move that has the highest score. As a result, no matter what your opponent does, you know that you will have your best possible advantage at the end of the evaluation period.

Unless you generate the search tree down to the leaf level, it is possible that your scores are inaccurate, resulting in you losing the game, even if your heuristic is good.
Solution 2
2) Apply alpha-beta pruning to the tic-tac-toe game
The alpha-beta pruning algorithm is illustrated in � REF _Ref338733325 * MERGEFORMAT �
Figure
4
�

Move�Board�Possible Wins�Possible Losses�Value�Min/Max��A1�XOO-X-X--�� ��1��A1,1�XOOOX-X--�2�1�1���A1,2�XOO-XOX--�3�1�2���A1,3�XOO-X-XO-�2�1�2���A1,4�XOO-X-X-O�2�1�1���A2�-OOXX-X--������A2,1�OOOXX-X--�2�2�0�0��A2,2�-OOXXOX--�(pruned)�����A2,3�-OOXX-XO-�(pruned)�����A2,4�-OOXX-X-O�(pruned)�����A3�-OO-XXX--������A3,1�OOO-XXX--�2�1�1�1��A3,2�-OOOXXX--�(pruned)�����A3,3�-OO-XXXO-�(pruned)�����A3,4�-OO-XXX-O�(pruned)�����A4�-OO-X-XX-������A4,1�OOO-X-XX-�2�2�0�0��A4,2�-OOOX-XX-�(pruned)�����A4,3�-OO-XOXX-�(pruned)�����A4,4�-OO-X-XXO�(pruned)�����A5�-OO-X-X-X������A5,1�OOO-X-X-X�2�1�1�1��A5,2�-OOOX-X-X�(pruned)�����A5,3�-OO-XOX-X�(pruned)�����A5,4�-OO-X-XOX�(pruned)�����Figure � SEQ Figure * ARABIC �
4
� - Solution 2
Move A1 (X to move in the upper left corner) results in a value of 1, derived from moves A1,1 and/or A1,4. When move A2 is examined, move A2,1 results in a score of 0, which is worse than the current maximum of 1 for A1. This means that there is no need to continue examining children of A2, since the results are sure to be worse than move A1.

Similarly, A3,1 has a score of 1, which means that there is no need to further examine children of A3, since it can’t be better than move A1. Move A4 can’t result in a score better than zero after evaluating A4,1 and move A5 is discarded after evaluating A5,1.

The best next move for X should be A1.
Problem 3
The sliding tile puzzle consists of three black tiles, three white tiles, and one blank space. There are two legal moves:
A tile may move into the adjacent empty location at a cost of 1.
A tile can hop over one or more other tiles into the empty location at a cost equal to the number of tiles jumped over.
B�B�B��W�W�W��The starting state is:

The goal state is to have all the white tiles to the left of the black tiles. The position of the blank space is unimportant. Presumably, we want to reach the goal state with the least cost.
Solution 3a
Analyze the state space with respect to complexity and looping.
The branching factor of this problem is constant. There are always 6 possible moves: each tile may move into the blank space.

Looping is quite possible, since there are no restrictions in the movements of the tiles. During the search, a list of previously encountered states must be kept.
 Each time a n ew move is considered, a check of this list must be made. If the
move results
 in a board that has appeared before, the move should not be allowed.

Solution 3b

if the blank tile is to the left of the black tile, move the white tile:

if E < B, then C = W - E - 1
if the blank tile is to the right of the white tile, move the black tile:
else if E > W, then C = E - B - 1
if none of the above, then the blank is between the two tiles, move the black and then the white tiles:
else C = (E - B - a) + (W - B - b)
which simplifies to W + E - 2B - a - b , where a & b are defined as:
if E = B + 1, then a = 0, else a=1

if E = W - 1, then b = 0, else b = 1

Figure
�

SEQ
Figure * ARABIC

�
5
�
 -
Heuristic
Formulas

for Tile Game

We will assume that the heuristic is to estimate the cost of reaching the goal state. In order to be admissible, it must never underestimate the value of a state. Obviously, a heuristic that always returns zero is admissible, resulting in a breadth-first search, but we will attempt to find a more informed heuristic. A simple heuristic would be to count the number of white tiles to the right of the leftmost black tile. However, we should be able to better estimate the value of a state by analyzing the cost of moving the tiles.

If a white tile is to the right of a black tile, the cost to move it to the left of that tile depends on the relative position of the blank space. For example, if the blank space is between the two tiles, the black tile can be moved into the blank space and the white tile moved into the blank space newly created by the black tile. If the blank space is not between the two tiles, then one of the tiles can be moved to the blank space directly. This means that the cost of interchanging a black and white tile can be determined by one of the
formulas
 shown in
�

REF
_Ref338929448 * MERGEFORMAT

�
Figure
5
�
. B, W, and E are the positions of the black tile, the white tile, and the empty space. The left most position is 1, the next 2, etc.

Consider the opening state of the game. The cost of interchanging the rightmost white tile and the leftmost black tile using equation 3 is 7 + 4 - 2 - 1 - 1, or 7. The cost of interchanging the innermost squares is 5 + 4 - 6 - 0 - 1, or 2. The cost of interchanging the leftmost black tile with the leftmost white tile is 5 + 4 - 2 - 1 - 1, or 5.

The next step in the heuristic is to determine what two tiles to interchange. Depending on your search method, selecting what tiles to interchange could be the job of the heuristic or the search algorithm. For example, if the heuristic is supposed to calculate the cost of interchanging two tiles, the above equations suffice. However, if the heuristic is supposed to approximate the total cost of reaching a goal state, it must generate a search tree of its own, and then compute the total of all moves (or use a different heuristic to approximate the current board.) Since the branching factor is so high in this problem, there are many ways to make the same move (e.g., exchange two tiles). In order to be accurate, either the heuristic must generate the entire search tree which the algorithm uses, the algorithm must generate the search tree and the heuristic
must
calculate the cost of each move, or the algorithm and heuristic must be set up so that they both generate the same tree.

3
b) Propose a heuristic for solving this problem and analyze it with respect to admissibility, monotonicity, and informedness.

For the purpose of this problem, we will assume that the algorithm will generate the search tree and ask the heuristic to provide the cost of making each potential move. Using an A* Algorithm to find the best solution
is described in
�

REF
_Ref338929617 * MERGEFORMAT

�
Figure
6
�
:

Set the current state to the initial state

While the current state is not the goal state

For each possible move
generate a new state by making the possible move
if the new state is a repeat, restart loop with next possible move
calculate the value of this node as the value of the parent node plus the cost of this move
if the new state is the goal state, terminate loop

else make the new state the current state

Figure
�

SEQ
Figure * ARABIC

�
6
�
 - Algorithm for
the Tile Problem

T
his heuristic is admissible because it calculates the actual cost of making each move.

The heuristic is monotonic because the cost of a move is always greater than zero and the value of a node is the cost of the move plus the value of the parent node.

The heuristic is informed because it provides the actual cost of each move.

�
Problem 4
Solve the 8-puzzle using the following production system and forward chaining using the following rules
. It is assumed that dup
licate states are not allowed.

 [R1] If the state is the goal state, then stop
[R2] If the blank is not on the top row, move it up one square
[R3] If the blank is not on the left edge, move it left one square
[R4] If the blank is not on the right edge, move it right one square
[R5] If the blank is not on the bottom row, move it down one.
The starting state is represented by the string: 283 164 7-5. The goal state is represented by the string 123 8-4 765.
1�2�3��8��4��7�6�5��2�8�3��1�6�4��7��5��Solution 4
4) Use the above rules in a data-driven fashion (i.e., forward chaining).
Since conflict resolution is performed by chosing the first rule, there is no need to look further after a rule has been found. Therefore, the conflict set is not shown, only the first applicable rule, which will be fired.

Step�Board�Rule�Comments��0�283 164 7-5�R2���1�283 1-4 765�R2���2�2-3 184 765�R3���3�-23 184 765�R5�R4 would cause a loop��4�123 -84 765�R4�R2 & R3 would cause a loop��5�123 8-4 765�R1�Goal state - done��
This approach could be improved by providing a heuristic to use for conflict resolution so that the better positions would be explored rather than based simply on the order of the rules.

CSE 481 Exam 1		Page � PAGE �
6
�

	Bill Pringle

